

Actividad Práctica 1 - Propiedades de los sólidos cristalinos

1) Objetivos:

- Analizar la conductividad eléctrica y la solubilidad en diferentes solventes de algunas muestras de sólidos.
- Comparar el punto de fusión de las muestras.
- 2) Materiales y sustancias/soluciones:
- 3) Factores de riesgo y medidas de seguridad:

4) Procedimiento:

Parte a - Estudio de la conductividad eléctrica

- 1. Colocar en vasos de Bohemia pequeños una muestra de cada uno de los sólidos.
- 2. Introducir los electrodos de grafito en el primer recipiente.
- 3. Cerrar el circuito y encender la fuente.
- 4. Observar si el sistema conduce o no la electricidad.
- 5. Agregar agua a la muestra y probar nuevamente la conductividad eléctrica.
- 6. Completar el cuadro con todos los datos.
- 7. Repetir los pasos anteriores con la siguiente muestra.

Parte b – Estudio de la solubilidad (ensayo cualitativo)

- 1. Colocar aproximadamente 4 mL de agua destilada en un tubo de ensayo para cada muestra de sólido y etiquetarlo.
- 2. Repetir el paso anterior utilizando disán como solvente.
- 3. Añadir una pequeña muestra de cada uno de los sólidos a los tubos anteriores.
- 4. Agitar para intentar disolverlos.
- 5. Observar y completar el cuadro con los resultados.

Parte c - Estudio del punto de fusión

- 1. Poner en cada cápsula o crisol una punta de espátula de cada muestra y calentar.
- 2. Observar los cambios.
- 3. Registrar con un termómetro en aquellos casos que sea posible el punto de fusión de la muestra.
- 4. Para las muestras que no se alcance dicho punto aclarar que el mismo es mayor a la temperatura máxima alcanzada.
- 5. Registrar todos los datos en el cuadro.

* Se pueden utilizar muestras de: parafina, sacarosa, cloruro de sodio, naftaleno, azufre, cobre, paradiclorobenceno, plomo, cloruro de potasio, cloruro de magnesio, magnesio, aluminio, permanganato de potasio, nitrato de potasio, urea, hidrógenocarbonato de sodio, entre otras.

Cuadro de datos:

Muestra de sólido	Conductividad eléctrica del sólido	Conductividad eléctrica en solución	Solubilidad en agua	Solubilidad en disán	PF (°C)
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					

- 5) Interpretación de los resultados:
 - ✓ ¿Qué sólidos comparten características como la conductividad eléctrica del sólido? ¿Cuáles tienen conductividad eléctrica en solución?
 - ✓ ¿Qué muestras son solubles en agua? ¿Cuáles son solubles en disán?
 - ✓ ¿Qué puedes decir sobre los puntos de fusión de las muestras analizadas?
 - ✓ En base a todas las respuestas anteriores, ¿cómo puedes agrupar a las diferentes muestras?
 - ✓ ¿Cómo puedes explicar las observaciones tomando en cuenta los conceptos abordados en este módulo?

Créditos:

✓ Referencias bibliográficas:

• Actividad 1: Diseñada a partir de Saravia, G., Segurola, B., Franco, M. y Nassi, M. (2010). Todo se transforma. Química- 3º Año CB. Montevideo, Uruguay: Contexto.

Esta obra está bajo una Licencia CreativeCommons Atribución-CompartirIgual 4.0 Internacional