Equilibrio químico - "Contando" - Instructor Actividad creada por Dee Dee Allen y María T. Oliver-Hoyo

Duración: 30 minutos

Tópico: Equilibrio e introducción al Principio de Le Chatelier

Nivel: Introductorio

Lección: Los estudiantes determinarán cuando una "reacción entre objetos" alcanza equilibrio químico.

Equipo y Materiales: 30 objetos por grupo y envases para contenerlos.

Objetivos:

Los estudiantes

• Explorarán cómo una reacción llega al equilibrio químico.

• Desarrollarán su propia definición de equilibrio.

• Construirán y explicarán una gráfica de concentración vs. tiempo.

Definirán k_d y k_i de una reacción.

• Podrán escribir las expresiones para constantes de equilibrio.

• Explorarán el efecto de una perturbación a una reacción en equilibrio

Ideas previas: El equilibrio se obtiene cuando [reactivos] = [productos].

Otras dificultades: Construcción e interpretación de gráficas.

Prerrequisitos: Ecuaciones químicas.

Facilitación de la actividad

Tareas	Razonamiento
Demostrar cómo se conduce la simulación.	Aclarar confusión sobre el procedimiento.
Distribuir diferentes cantidades de objetos y la ecuación correspondiente.	Promover que cada grupo tenga que trabajar en ejemplos diferentes para luego de la colaboración entender mejor el concepto.
Los estudiantes toman datos cada minuto.	Para emplear los valores de k _d y k _i a la reacción. Los estudiantes probablemente pararán el ejercicio al ver que los valores dejan de cambiar.
Hacer que los estudiantes definan el equilibrio con sus propias palabras.	Enfatizar que aunque el equilibrio se obtiene cuando las concentraciones de reactivos y productos se mantienen constantes, el proceso es dinámico.
Los estudiantes grafican sus datos [A] y [B] vs tiempo en la misma gráfica.	Visualizar el proceso para poder explicar lo que está pasando a medida que la reacción progresa.
Discutir el significado de k _d y k _i .	Reforzar la comprensión de k _d y k _i .

Introducir el concepto de constante de equilibrio, Kc.	Definir matemáticamente $Kc = k_d / k_i = [productos]/[reactivos].$	
Añadir 6 objetos y continuar el monitoreo de la reacción.	Explorar el efecto de una perturbación a un sistema en equilibrio.	
Los estudiantes incluyen nuevos datos en la gráfica.	Practicar construcción de gráficas.	
Calcular Kc.	Demostrar que la expresión no cambia.	
Incluir problemas de equilibrio químico.	Practicar los conceptos aprendidos.	
Los estudiantes determinan los cambios asociados a la perturbación de la reacción.	Practicar interpretación de datos en la gráfica. Esto sirve de preludio para enseñar el Principio de Le Chatelier.	

Discusión y material complementario

Para los estudiantes, el concepto de equilibrio químico es difícil de entender. Esta actividad permite explorar y visualizar el proceso de equilibrio. Este ejemplo debe servir al instructor para reforzar su familiaridad con esta actividad. Si....

- ... se empieza con 24 objetos que representan al reactivo A al inicio de la reacción (t = 0)
- la mitad del reactivo A (12 objetos) se convierten a B en el primer minuto. Al inicio no hay reactivo B, por ende, nada del B puede convertirse en A.
- Durante el segundo minuto, la ½ de A y ¼ de B (6 y 3) se convierten simultáneamente (A en B y B en A) dejando 9 A y 15 B. El total de objetos siempre suma 24.
- Los objetos no pueden dividirse. Por ende, mientras el proceso continúa y de ser necesario, los números obtenidos se redondean consistentemente ya sea para arriba o para abajo.
- En este caso, toma sólo 3 minutos ver que las concentraciones de A y B permanecen iguales. Es necesario reforzar que el proceso no es estático, sino que se manifiesta manteniendo las concentraciones constantes.

Table 1. Concentration Data.

Time	[A]	[B]
0	24	0
1	12	12
2	9	15
3	8	16
4	8	16
5	8	16

Figure 1. Plot of Concentration vs. Time

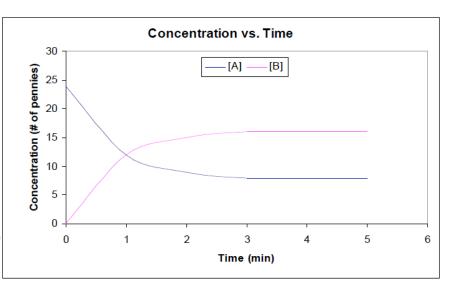
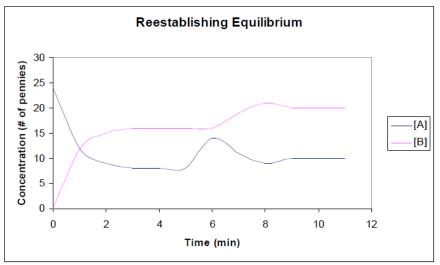



Table 2. Concentration Data before and after Perturbation.

Time	[A]	[B]
0	24	0
1	12	12
2	9	15
3	8	16
4	8	16
5	8	16
6	14	16
7	11	19
8	9	21
9	10	20
10	10	20
11	10	20

Figure 1. Plot of Concentration vs. Time after perturbation.

Créditos:

Actividad presentada en Curso-Taller "Metodologías activas en la enseñanza de las ciencias: cambio de enfoque" (27 de abril y 11 de mayo de 2019). Instituto Superior Tecnológico de Buceo.