POTENCIAL CREADO POR UNA CARGA PUNTUAL

Imaginemos que se quiere trasladar una carga puntual desde A hasta B, a lo largo de una linea de campo eléctrico.
Note que la ecuación $\Delta V_{A B}=-E \cdot \Delta r \cdot \cos \alpha$ NO puede utilizarse, pues E no es uniforme.
¿Qué haremos? Algo que ya utilizamos en otras oportunidades: dividir el segmento $A B$ en n partes, partes tan, tan, pero tan pequeñas (infinitésimas) que pueden considerarse un punto. En esos pequeñísimos segmentos dr, el campo puede considerarse constante, y la ecuación anterior se puede utilizar, hallando pequeños $d v$.
Finalmente, "sumaremos" las dv, para hallar $\Delta \mathrm{V}$ entre Ay B, a través de una integral.

Como nos estamos moviendo a lo largo de una línea de campo, $\alpha=0 y \cos \alpha=1$.
Aplicando la ecuación: $\Delta V_{A B}=-E . \Delta r \cdot \cos \alpha$ para un pequeño dr tenemos :

$$
d V=-E . d r
$$

Sustituimos el término "E" (recuerde: $E=\frac{R q}{r^{2}}$). Como trabajamos entre dos puntos (aunque estén muy cerca) para trabajar con un valor medio, en vez de trabajar con r^{2} se multiplica $r_{1} \cdot r_{2}$

Entre 0 y 1: $\quad d V_{0-1}=-\frac{K q}{r_{0} r_{1}} .\left(r_{1}-r_{0}\right)$
Reordenando:

$$
d V_{0-1}=-K q \cdot \frac{\left(r_{1}-r_{0}\right)}{r_{0} r_{1}}
$$

El mismo razonamiento se aplica entre 1 y 2 , entre 2 y 3 , y a sil hasta

Si dividimos se obtiene:

$$
d V_{0-1}=-K q\left(\frac{1}{r_{0}}-\frac{1}{r_{1}}\right)
$$

El mismo razonamiento se aplica entre 1 y 2 , entre 2 y $3, y$ a sí hasta llegar al n...

Si "sumamos" miembro a miembro
$d V_{0-1}=-K q\left(\frac{1}{r_{0}}-\frac{1}{y_{1}}\right)$
$d V_{1-2}=-K q\left(\frac{1}{f_{1}}-\frac{1}{r_{2}}\right)$
$d V_{2-3}=-K q\left(\frac{1}{r_{2}}-\frac{1}{\gamma_{3}}\right)$
""
""

$$
d V_{(n-1)-n}=-K q\left(\frac{1}{r / n-1}-\frac{1}{r_{n}}\right)
$$

$$
\sum_{0}^{n} d V=-K q\left(\frac{1}{r_{0}}-\frac{1}{r_{n}}\right)=K q\left(\frac{1}{r_{n}}-\frac{1}{r_{0}}\right)
$$

Del lado derecho de la igualdad, se factoriza Kq, y se suma lo que hay dentro del paréntesis, por lo que se cancelan varios sumandos

Para eliminar el signo de menos, invertimos la resta

Considerando que el punto 0 es el extremo A del segmento, \mathbf{y} el punto al que llamamos n es el extremo B, podemos sustituir:

$$
\sum_{0}^{n} d V=K q\left(\frac{1}{r_{n}}-\frac{1}{r_{0}}\right)
$$

$$
\begin{aligned}
& \qquad \Delta V_{A B}=K q\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right) \stackrel{\Delta V_{A B}=\left(\frac{K q}{r_{B}}-\left(\frac{K q}{r_{A}}\right)\right.}{\begin{array}{l}
\text { Note que, el primer término es una } \\
\text { propiedad de la carga, relacionada } \\
\text { con el punto B, y el segundo, una } \\
\text { propiedad relacionada con } \mathbf{A}, \mathbf{y}
\end{array}} \begin{array}{l}
\Delta V_{A B}=
\end{array} V_{B}-V_{A}
\end{aligned}
$$

propiedad relacionada con A, y ambos se restan:

POTENCIAL CREADO POR UNA CARGA PUNTUAL

En resumen, se define el potencial que crea una carga puntual en un punto como:

OBSERVACIONES:

1) Note que, cuando hablamos de "el potencial", hablamos de una diferencia de potencial, tomando un punto como potencial cero. En este caso, la expresión para V se hace cero cuando el denominador "es infinito". Es decir, el potencial de la carga decrece al alejarse de ella, y a una distancia infinita de la carga puntual, el potencial que ella genera es cero ($V_{-}-0$). El potencial en \mathbf{P} es la diferencia de potencial entre un punto muy alejado ("el infinito") y \mathbf{P}
2)Cuando hablamos de potencial eléctrico, hablamos de una magnitud escalar, que, al igual que el campo eléctrico describe cómo el espacio es alterado por la presencia de una carga puntual .
